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SUMMARY

A model for human decislon-making has been developed and
tested against experimental data. Thls model 1s a strailghtforward
adaptation of the optimal-control model for pillot/vehicle systems
developed by Bolt Berahek and Newman Inc. The models for decision
and control both contain the concepts of time delay, observation
nolse, optimal prediction, and optimal estimation. The model for
decision-making, developed in this study is intended to apply to
situations in which the human bases hls decision on his estimate

of the state of a linear plant.

Experiments are described for the following task situations:
(a) single decision tasks, (b) two decision tasks, and (c¢) simul-
taneous manual control and decision-making. Using fixed values
for model parameters, we can predict single-task and two-task
decision performance to within an accuracy of 10 percent. Apree-
ment is less good for the simultaneous decision and control situ-
atlon, and the results of this experiment do not allow a conclu-
sive test of the predictive capability of the model in this situ-

ation.



1. INTRODUCTION

Considerable effort has been devoted to understanding how a
pilot controls his alrcraft, and reasonably accurate models for
the pilot as a feedback controller have been developed. Continu-
ous control, however, is but one of the functions required of
the pilot; he must also make some crucial decisions during the
course of a flight. Perhaps most important i1s the decision
whether to attempt a landing or to go around for another try.
Clearly, a miscalculation could have very serious conseqguences.
In addition, the pilot must continuocusly monitor the behavior of
the aircraft so that he may ascertain whether or not the system
is behaving properly. Control-system failures will occur from
time-to-time, and the pilot rmust culickly identify such a failure
and initiate the appropriate recovery strategy. As flight-control
systems become more sophisticated, monitoring and decision-making
tasks willl play an increasingly important role in the pilot's
management of the alrcraft.

In order that we may have the proper tools for analyzing
modern flight-control systems, models for the pilot must be de-
veloped which account for his decision-making as well as his con-
trol behavior. If we wish to understand how the pilot performs a
multiplicity of decision and control tasks, as he is often reguired
to do, the models for decision behavior must be integrated into
the models for monlitoring and control. Ideally, a common model
structure would be developed to handle all the iImportant tasks
required of the pilot and to account for the mutual interference
among these tasks that occurs because of the pilot's limited work-
load capacity.



This report describes a study performed for NASA-Ames Research
Center to develop a model for human declision-making that can ulti-
mately be applied to decisions relating to alrcraft management.
Model development has been guided by the requirement to maintain
a common model structure for both decislion and control behavior.
This work bullds logically upon studies of multi-variable manual
control systems performed under previous contracts with NASA-Ames.

The model for decision-making developed in this study is in-
tended to apply to situations in which the human bases his decision
on his estimate of the state of a linear plant. It 1s based on
the existing optimal-control model for pilot/vehicle systems de-
veloped by Bolt Beranek and Newman Inc. The optimal-control
model contains the concepts of observation noise, optimal predic-
tion, and optimal estimation which can be directly applied to
certaln types of decislion problems. In addition, the existing
pilot/vehicle model is able to account for lnterference among
control tasks performed 1n parallel. Because the exlisting model
structure appears particularly well-suited for encompassing both
decision and control tasks, our efforts have been confined to re-
fining this particular model structure and we have not searched
for others which might explain the decision behavior observed in
the experimental study.

The report is organized as follows. In Chapter 2 we review
existing models for decision-makling and control that are relevant
to this study. New model development is presented in Chapter 3,
along with a description and analysis of the declsion task explored
in this study. Principal experimental results are presented in
Chapter 4 and discussed further in Chapter 5. Concluding remarks
appear in Chapter 6. The appendices contaln supplemental informa-
tion relating to the experimental and analytical procedures.



2. CURRENT MODELS FOR CONTROL AND DECISION-MAKING

The model for human decislon-making that 1s presented in this
report builds logically upon existing models for human control and
decision-making. The observation nolse, optimal estimation, and
optimal prediction concepts that appear in the optimal-control
model for continuous tracking are key elements in the model for
declision-making. In order that the reader may follow the model
development presented in the next section of this report, we re-
view below the most relevant features of exlisting models for human

control and decision-making.
2.1 Optimal Decision-Making-

Models for optimal decislion-making are summarized in detail
in References 1 and 2. These models are based on the premise that
well-tralned humans declide in a near optimal manner. That 1s,
decisions are made to maximize (or minimize) some performance
measure. A number of performance measures may be postulated, and
there has been some controversy in the literature as to which ones
are appropriate to various decision situations (Ref.l). We shall
consider here the class of decision-makling tasks in whilch 1t is
reasonable to assume that the human attempts to maximize the ex-
pected "utlility" of the outcome of his decision.

Declislons are almost always based on less than perfect infor-
mation about the present (or future) "state of the world". The
state of the world may be one of any number of mutually exclusive
possibilities; the human must determine the probabillity that each
of the potential states 1s the true state. Two or more courses
of action (i.e., "decisions") are possible, the correctness of
any decision depending upon what happens to be the true state of
the world.



In order to model decision-making in the presence of uncer-
tainty, we pretend that the human adopts the following decision
strategy. First, he assigns numerical "utilities" to each of the
possible outcomes of each decision. (For example, in deciding
whether to land an aircraft or to abort, the pilot should weigh
the benefit of making a successful landing, the cost of a crash,
and the cost of making a go-around.) Typically, the utility of a
correct decislion 1s numerically positive, whereas that of an in-
correct decision is negative. Having assigned utilities, the
human then calculates the probabilities assoclated with each of
the possible states of the world being true, using whatever rele-
vant information he is able to obtain. He now computes the ex-
pected utllity assoclated with each decision and makes the decil-
sion that ylelds the largest expected utility. Decision-making
may thus be considered as a three-step procedure: (a) assignment
of utilities to each state-decision combination, (b) assessment
of the probabilities of the state of the world, and (c¢) taking
the appropriate actlion.

We shall consider the human's declsion task as primarily that
of determining the probabllities of the various states of the
world. The utility matrix 1s assumed to be constructed prior to
the task*, and the action to be taken 1s automatic once the ex-
pected utilities have been computed.

We now formallize some of the concepts associated with the
utility-maximization theory of human decision-making. Let the
possible states of the world be represented by a set of mutually-

exclusive hypotheses h One (and only one) of them represents

q°

1Although it is a nontrivial task to determine the appropriate
utility matrix in many realistic situations, the experimental
tasks explored under this contract involved a utility matrix
that was easlly understood and accepted by the subjects.



the "true" state. The decision that the ith hypothesis 1s true
is represented by Hi' The utility of deciding Hi when, in fact,
hJ is true may be represented as U(Hi,hJ) or, more compactly,

Uij' We assume that the Uij
(the set of correct decisions) and negative otherwise.

are numerically positive for i=}

The human is presented some data [z] on which to base his
declision. These data may be discrete items of information, con-
tinuous waveforms, or combinations of both. 1In any case, we use
[z] here to represent the entire past history of the data. The
expected value of the utility assoclated with deciding H1 is

N
E{U|H,} = ZUU + P(h,|2) (1)
j=1

where P(hjlz) is the probability that hypothesis hj is true, given
the avallable data. The optimal decision strategy 1s simply to
select the hypothesis Hi which maximizes the expected utility.

Many important decision tasks require the human to decide be-
tween two possible hypotheses (e.g., a contemplated landing either
does or does not have a sufficiently high probability of success).
The decision tasks to be studied under this Contract will fall
into this class. Accordingly, we analyze the binary decision

task 1in greater detail.

Assume two mutually exclusive hypotheses h1 and ho. The ex-
pected utilities of the possible decisions Hl and Ho are given as

E{U[H,} = U P(hylz) + Uy P(hy|2z) (2a)

00 1

U

E{UlHl} P(holz) + U P(hl|z) (2b)

10 11



The decision rule 1Is to decide Hl 1f the expected utility asso-

clated with H1 is greater than the expected utility associated
with HO; otherwise, declde HO' Accordingly, we derive the fol-
lowing decision rule from Equations (2a) and (2b):

P(hllz) U,

Hy 1f B(h,12) ~ U

jae
U

(3)

fas
]

H0 otherwlse

OO—UlO and Ul = Ull_U01' The decision rule, then,
may be based on the ratio of probabilities (the "odds ratio"),
which, it seems, is more rellably estimated by humans than are

the individual probabilities (Ref.1l).

where UO = U

Computation of the odds ratioc 1s often facilitated by the
use of Bayes' theorem, which may be stated as

P(h,z) = P(h|z) - P(z) = P(z|h) + P(h) (4)

where P(h,z) 1s the joint probability of the event [h] and the
data [z], and P(z) is the overall probability that event [h] will
occur. P(h) is often called the "prior probability"; that is,
the estimate of the probability that hypothesis [h] 1s true that
is made before the data [z] have become available. Using Equa-
tion (U4), we may restate the decision rule to be

P(z|h)) U, P(hy)

Hy if Plz[h,) ~ U, = Plh))

jas)
1]

(5)

e
]

HO otherwilse



where the ratio P(zlhl)/P(z|hO) is called the "likelihood ratio".
The optimal (Bayesian) decision rule is usually expressed in this
form.

2.2 Models for Continuous Control

2.2.1 The Optimal-Control Model for Pilot-Vehicle Systems
The reader is assumed to be famillar with the optimal-control

model that has been developed for analyzing pllot-vehlcle systems.
This model, which is described in detail in References 3 and 4,

has been found capable of reproducing performance measures 1in a
variety of single-variable and multi-variable tracking situations
(Refs.5-10). Most of the elements of the optimal-control model

are contained 1n the model for human decision performance presented
in the following chapter of thls report.

In order to refresh the reader's memory, a block diagram of
the model 1s shown in Figure 1. Let us review briefly those ele-
ments which relate directly to human performance (shown within
the dashed 1line). Human limitations are represented by a time
delay [T], by observation and motor noise processes, and, to some
extent, by certain terms in the cost functional. The observation
noise process Xv(t) accounts for most of the stochastic portion of
the human's response (i.e., remnant); in some cases, a separate
motor noise term vu(t) is needed to provide an accurate match to
certain aspects of the controller's behavior. A cost weighting
on mean-squared control-rate activity 1is typically included in the
cost functional to represent limitations (both physiological and
self-imposed) on the bandwidth of the controller's response. The
effect of this welghting is to generate a first-order lag with time
constant T in the control strategy.
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The "adjustable" portion of the pilot's response strategy
consists of: (a) a Kalman filter to provide the human with the
best estimate of the system states; (b) an optimal predictor to
compensate partially for the human's inherent time delay; and
(¢) an optimal control law, designated as -2%¥ in Figure 1, which
operates on the estimated state vector. These elements are pre-
sumed to be structured by the human so as to minimize the cost
functional within the 1limits imposed by hils inherent limlitations.

2.2.2 An Observation Noise Model for Controller Remnant

Our model for controller remnant is reviewed 1n detail in Refer-
ences 6-8. We originally developed a model for remnant based on
multiplicative (i.e., proportional) sources of human randomness
such as: (a) errors in observing the displayed variable, (b) errors
in executing the intended control action, and (c¢) random fluctua-
tions in controller gain and time delay. Most of these processes
were found to be indistinguishable in their effects on controller
remnant and were therefore combined into a single noise process —

an equivalent observation noise.

Observation noise 1s most usefully represented as a vector
process 1n which each sensory variable that 1is utilized by the
controller 1s considered to be perturbed by a white noise process.
These observation nolse processes are assumed to be linearly in-
dependent of each other and of external disturbance signals.

When the rms amplltudes of the quantities presented on the display
are large compared to visual threshold effects, the power density
levels of the noise processes vary proportionally with signal
variance (Ref.8). 1In this situation, observation nolse may be

modelled as:

= P - 2 (6)

10



where Xy i1s a vector composed of the power density levels of the
component nolse processes; P 1s a normalized noilse level, or "noise/
signal ratio"; and gs is a vector composed of the variances of the
quantities obtained from the display. This model for controller
remnant has been verified by extensive analysis of single-axis
manual control data.

The numerical value of the noise/slgnal ratio, P, has been
found to be on the order of 0.01 units of normalized power per
rad/sec (i.e., -20 4B) for a wide variety of single-loop control
tasks. The relative invariance of this measurement suggests that
a central-processing type of disturbance common to all tracking
tasks is primarily responsible for remnant that 1s measured under
nearly 1deal viewlng conditions. Random perturbations of human
controller gain or time delay are possible manifestations of
central-processing "nolse" that would account for the remnant
that 1s measured. We have generalized upon the notion of central-
processing noise to develop the model for task interference which
1s summarized below.

2.2.3 A Model for Task Interference
Because the human can exert only a limited amount of physlcal or

mental effort, his performance on a given psychomotor task gener-
ally degrades as he 1s required to perform more and more tasks
simultaneocusly. Multiple tasks may thus be sald to "interfere"
with one another. Interference may occur in the visual system
(because of scanning requirements), the motor system (if intermit-
tent control becomes necessary), and the central-processing system
(because of "sharing of attention").

A model for central sources of interference has been developed
and 1s descrilbed in References 9 and 10. Development of thilis model

11



parallels the development of the model for controller remnant in
that the various sources of interference are reflected to an
equivalent perceptual source of interference. For mathematical
convenience, we treat interference as occurring among the percep-
tual subtasks that are embodied in the entire task environment.

The model for interference 1s based on the primary assumption
that the controller has a fixed amount of '"capaclity" or "attention"
which must be shared among the various tasks to be performed. The
effects of capaclity-sharing are modelled by the following equation:

P

p{M) = 0 (7)
m

where P;M) is the noise/signal ratio assoclated with the mth per-
ceptual task when a total of M tasks are performed simultaneously,
Po i1s the noise ratio that 1s measured when a single task is per-
formed, and fm is the fraction of capaclity allocated to the mth
task. The noilse/signal ratio is thus shown to vary inversely with
the amount of "attention" devoted to a particular task. Since
overall capacity or attentlon is presumed to be constant, the
fractions of capacity must sum to unity. The noise/signal ratios
assoclated with each of the subtasks must therefore obey the
following rule:

M M
me=Po ;%W=1 (8)

m=1 m

m=1

The human 1s assumed to distribute his attention, subject to the
above constraint, to optimize some overall measure of performance.

12



This model for task Interference has been validated in multi-
variable continuous-control situations. The optimal control model
described above has been used in conjunction with the model for
interference to predict allocation of attention as well as track-
ing performance in these situations. 1In the followlng chapter of
this report we show how the model for task interference may be
applied to multiple-decision tasks and to tasks requiliring decision
plus continuous control.

13



3. ANALYSIS OF THE DECISION TASK

3.1 Introduction

We 1mposed three constralnts on the selection of an experi-
mental decision task. The first constraint was that the task be
compatible with the existling theoretical structure for optimal
control and estimation. Secondly, we desired a task for which
the correctness or incorrectness of the subject's response be
unamblguous. Finally, a certaln amount of resemblance between
the experimental task and a decislion task encountered 1n flight
siltuations was desired.

At the time we began this work, the state-variable model
had been lmplemented only for task situations in which the inputs
were continuous with time-stationary characteristics. Accordingly,
we desired a task which required continuous observation and deci-
sion-making (albeit discrete response activity.) The amount of
pre-experimental model development and lmplementation would thereby
be minimized, and predictions of decision performance could be
obtained via Kalman estimation techniques then currently imple-
mented on our digital computer.

The requlirement for unambiguous interpretation of the sub-
Jject's response was not a trivial one. Ambligulty does exist, for
example, In the case of a continuous signal-detection (i.e.,
"vigilance") task. Here the subject is required to detect a ran-
domly-~occurring signal in the presence of continuous noilse. Since
the duration of the signal 1s usually very brief — on the order
of the subject's reaction time — the subject's response will occur
after the signal has ceased. Hence, it is not always clear
whether a gilven response corresponds to the occurrence of a signal

14



in the recent past or is, in fact, a "false alarm" (Ref.2).
Partly for thls reason, we decided against using a vigilance task.

Our cholce of a decislon task was influenced to some extent
by an Investigation, concurrently performed by NASA-Ames Research
Center (Ref.1l1l) and Bolt Beranek and Newman Inc. (Ref.12), of a
pictorial runway display for making instrument approaches and
touchdowns. Thils study lncluded an experiment in which the pilots
were required, in effect, to determine whether or not they were
within the "landing window". In order to relate the work of this
proJect to the concurrent study of approach and landing, we de-
signed and used a decision task that was an idealization of the
task of deciding whether or not the alrcraft is in the landing
window. This task 1s described below.

3.2 Description of the Task

The subjJect was presented with an osclilloscoplc representa-
tion of a nolsy glide-slope lndicator along wlth two reference
indicators showing the "target'", or region of acceptable glide-
slope error. The subject's task was to keep hils response button
depressed whenever he thought the true error was within the target
area. In order to test our model for task interference, we pro-
vided two such declision tasks simultaneously to the subject. 1In
the two-task situation, two nolsy indicators were presented on
the same display and the subject manipulated two response buttons.
The two "error" signals were linearly independent and were in no
way affected by the subject's response. The display format for
the two-task situation 1s shown in Figure 2. (Additional details
on the experimental decision task are given in Appendix A.)

15
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The quantity displayed to the pilot was constructed as the
summation of a "signal" plus a "noise" waveform. Thus,

y(t) = s(t) + n(t) (9)

where y(t) was displayed to the subject, s(t) was a low-frequency
random waveform that we defined as the "signal" (say, glide-slope
error), and n(t) was a random waveform of higher frequency that
we defined as "instrument noise".

Both s(t) and n(t) were generated by Gaussian white noise
processes which were shaped by filters of the followlng form:

S . 1
s+0.05 /3 2

F(s) = (10)

The element s/(s+0.05)was included to guarantee that each signal
had zero mean; the second-order Butterworth filter provided the
primary shaping of the signal. The "bandwidth" of s(t) was fixed
at 0.5 rad/sec*, and the input amplitude was adjusted so that
s(t) would be within the target area half the time during the
course of an experimental trial. The bandwidth of n(t) was suf-
ficiently greater than that of s(t) to enable the subject to dis-
tinguish between the nolse and signal components of the displayed
variable [y(t)]. ©Noise power and bandwidth were experimental
variables. The whilite noise forcing functions driving the signal
and noise filters were llinearly uncorrelated.

¥
For semantic convenience, we refer to the critical filter fre-

quency w, as the "bandwidth" of the filter output.
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Our mathematical description of this decislion task consists,
in part, of a state-variable representation of the dynamics of
s(t), n(t), and y(t). Let x(t) be a vector consisting of the
state variables needed to describe the problem. Since two third-
order filters were used to generate the signal displayed to the
human, the state vector must contain six elements, two of which
may be identified with n(t) and s(t). The equations of motion
of x(t) are

x(t) = A x(t) + w(t) (11)

where A is a matrix which accounts jointly for the dynamiecs of
these random processes and w(t) is a vector of the (two) independent

white driving nolses.

The subject was not shown the full state vector. Instead,
he was displayed the summation of two of the states. The display
vector was thus a linear transformation of the state vector and

may be written in general terms as
y(t) = C x(t) (12)

(Since the subject will usually obtain rate as well as displace-
ment information from his display, we must consider the subject's
perceptual input as a vector quantity even though only one quan-
tity 1s displayed explicitly.)

The mathematical representation of the decision task is thus
to a large extent identical to our mathematical representation of
the continuous control task. (See Ref.4) Not surprisingly, then,
.we may directly apply a considerable portion of our optimal-control
model to the analysis of the decision task. The majJor difference
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is that we replace optimal control action with optimal decision
behavior. Our model for the human's decislion strategy is described
below.

3.3 The Human's Optimal Decision Strategy

It 1is convenlent to separate the human's decision strategy
into two distinct operations: (a) estimating the underlying signal
s(t), given his perceptual information, and (b) generating his
declision response glven his best estimate of s(t). The model for
the human's estimation stratepgy is identical to that which we
have applied in the continuous-control situation, as shown in
Figure 3. The human's limitations are represented by an equivalent
perceptual time delay and observation nolse process, as before,
and we retain the model elements of optimal prediction and Kalman
filtering. The human 1s assumed to adopt an optimal declision rule
which operates on his best estimate of the system states to yield
a decislion strategy which maximizes the expected utility of the
decision. The optimal estimation and optimal decision aspects of
the model are discussed separately below.

3.3.1 Optimal Estimation
The subject's ability to estimate the sipnal s(t) is limited not
only by the addition of simulated instrument noise, but also by

the subject's own internal nolse and time delays. The time delay
(or "reaction time") arises from a combination of neural conduc-
tion times, central-processing delays, and limitations on neuro-
muscular bandwidth. To the extent that the human cannot compen-
sate for this time delay by an optimal prediction strategy, time
delay will be a source of performance degradation.
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Second, and perhaps more important, is the randomness asso-
clated with human response behavior. That is, if we repeat the
presentation of the entire waveform y(t) on two different experi-
mental trials, the subject will not depress and release his re-
sponse button at exacély the same relative times from one trial
to the next. With respect to this particular decision task,
potential sources of human randomness include: (a) perceptual
errors made in observing y(t), (b) computational errors in esti-
mating s(t) based on the perceptual input, and (c¢) variations in
the human's effective time delay. For mathematical convenience,
we combine all sources of randomness into an equivalent perceptual,
or observation, nolse process. This treatment of decision random-
ness 1s parallel to our treatment of human controller remnant
(see Refs.6-8).

The human's perceptual input is thus considered as a noisy,
delayed version of the quantity presented on the display and is
represented as

Xp(t) = y(t-1) + zy(t-T) (13)

where zp(t) is the vector of perceived guantities, T is the human's
effective time delay, and yy(t-r) is a vector of equivalent obser-
vation noise process. (For the task considered here, the vector
!y contains two components, vy and vﬁ, to represent observation
nolse processes associated with estimation of displacement and
velocity, respectively.) In keeping with our previous treatment

of human observation noise, we consider zy(t) to be composed of
white gaussian noise processes that are linearly independent of
each other and of system forcing functions.
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Since the displayed quantity is generated by linearly filtered
white nolse, the signal l(t) 1s, by definition, a sample function
of a gauss-markov process (Ref.13). This type of random process
has the following properties which justify our assumptions of
optimal estimation and prediction:

1. The current "state" of the process contains all the useful
information about the process. Thus, for most practical
purposes, the entire past history of y(t) is "summarized" by
the current value of the state vector, x(t).

2. The best estimate of the state vector 1s given by a Kalman
filter cascaded with an optimal predictor which operates on
the noisy input variable Xp(t) (Ref.13). This filter is linear
and time-invariant, and the difference between the instantaneous
value of the state vector and the best estimate 1s also time
invariant. (This difference, or "estimation error", has a
variance which we denote by 92') The estimate of the state
vector, denoted by ﬁ(t), is "pbest" in the sense that it is
the minimum-~variance as well as the maximum-likelihood esti-
mate. (Ref.1l4)

3. The pair (g(t),ge) constitutes a sufficient statistic to test
hypotheses about x(t) based on the noisy data Xp(t)- This is
so because all the relevant information that can be extracted
from Xp(t) is contained jointly in g(t) and o (Ref.1h4).

Note that the Kalman filter may be used to predict the vari-
ance of the estimation error as well as the lnstantaneous best
estimate of the state vector. (Predictions of the instantaneous
estimation error cannot be obtained; otherwise, the state vector
could be estimated perfectly.) In the following section we show
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that knowledge of the rms estimation error is needed to generate
the correct decision strategy.

3.3.2 Optimal Decision Rule
The general expression for the optimal decision rule has been
derived 1in Chapter 2 as

( P(hllz) U,
} H, if 'P—(?IE—I—Z—)— > _U_]-:
H(t) = <’ (1b)
H. otherwise
\ 0

where H(t) 1s the subject's instantaneous decision response, h(t)
is the state of the world, z(t) represents the data upon which the
human bases his decision, and UO and Ul relate to the utilities

of the various correct and incorrect decision possibilities. Let
us identify h, as the condition for which the signal s(t) is with-
in the target boundaries (denoted by iXT). The condition hO
represents an outside-the-target condition. Similarly, Hl and HO
represent the human's decision that the sipnal is either inside

or outside the target area. For the problem considered here, the
data denoted by the general expression z(t) consist of the instan-
taneous best estimate X(t) and the rms estimation error O
Although the Kalman filter yields the full g and ge vectors, only
those elements corresponding to the signal s(t) are needed for
making the decision.

We now reformulate the general decision rule of Equation (14)
in terms of problem variables:
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( P(ls(t)lf_YT"s\(t):cs ) U

H, if . e . 0
S(t),oS ) 1
e

P([s(t) [>Y,]

H(t) = < (15)

k H0 otherwise
For any UO/Ul’ we may find a "decision boundary"” YD such that

P(ls(t)lngle(t>,os ) P(ls(t)leTIQ(t),cs )
e e 1

= | o (16)
P(]s(t7]>YDT§(t),ose) P(]s(t)]>YTI§Kt),oS'7’ Uy

e

Thus, whatever the utility matrix, the subject's optimal decision
strategy is to respond "in" whenever his best estimate of s(t) is
less than some predetermined decision boundary.

The relation of the decision boundary to the actual target
boundary depends on the ratio Ul/UO' For example, if the penalty
for incorrectly deciding that s(t) is on target is much greater
than the penalties and rewards associated with the remaining de-
cision possibilities (as might be the case in making a landing
decision), the subject should set his decision boundaries to span
a narrower range than the actual target boundaries. This strategy
will cause him to make fewer errors of the expensive type at the
cost of making more errors of the less costly type. If Ul and UO
are equal (as presumably was the case in our experiments), the
subject should adopt the actual target boundary as his decision
boundary.
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3.4 Predicted Decision Performance

In thls section we show how the model described above may be
used to predict the subject's decision error. Only the principal
theoretical results are presented here; for more details on the
computational procedure, see Section B.2 of the Appendix. Single-
task and two-task situations are discussed separately.

3.4.1 Single-Task Decision Performance
We analyze here the single-task decision situations that were ex-

plored experimentally. The principal performance measure is the

"decision error", defined as the probability that the subject will
*

make elther type of decision error at any instant of time. That

is,

Decision FError = P(Hl,ho) + P(Ho,hl) (17)

The subject is assumed to be penalized egually for either type of
decision error. No reward is given for a correct decision. We
shall, therefore, treat the decision error as a "cost" that is to
be minimized (rather than a "utility", of negative numerical value,

that 1s to be maximized).

We consider two experimental variables: the critical frecuency
("bandwidth") of the filter used to generate the simulated instru-
ment noise, and the ratio of "sipnal" power to "noise" power. In
addition, we must select values for the human's time delay and
observation noise levels. Let us fix the time delay at 0.2 sec.--
a value that 1s typical of the effective delays inferred from

¥

We interpret this probability as a prediction of the fraction of
time that the subject's decision response will be in error over
the course of an experimental trial.
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studies of manual control behavior. Let us also assume that the
observation noise levels are proportional to signal variance, and
that the constant of proportionality P is the same for displace-
ment and rate perception.* This treatment 1s consistent with our
treatment of controller remnant.

Rather than specify a single, nominal value for the human's
internal noise/signal ratio, we shall treat this model parameter
as an analytlical variable. We have two reasons for dolng this.
First, we intend to account for the effects of task interference
through changes in noise/signal ratio. Accordingly, we must in-
vestigate the relation between predicted decision error and noise/
signal ratio. Second, we require experimental evidence to ascer-
tain the value of noise/signal ratio that corresponds to single-
task performance (which, as we shall see, varies from subject-to-
subject).

Predicted decision error 1s shown as a function of noise/
signal ratio in Figure 4. Curves are shown for each of the single-
task conditions that were investigated experimentally. The filter
bandwidth for the noise process n(t) and the ratio of signal power
to noise power 1s given for each of the conditlons in the legend

accompanying the figure.

For the most part, the curves shown in Figure 4 behave as one
would expect. Predicted decision error increases as the simulated
instrument noise power increases and as the human's internal noise
increases. There 1s one unexpected result, however. The rank
order of the two tasks corresponding to a cg/oi of 22 (Tasks B and
C) depends on the noise/signal ratio parameter assoclated with the

*A modification has to be made to the model of Equation (4) to
account for the fact that the subject's display contalns two
reference levels (the two target boundaries) instead of the
single zero reference that 1is usually presented. This modifica-
tion is described in Section B.l of the Appendilx.
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human. These two tasks differ with regard to the bandwidth asso-
ciated with the noise process (4 rad/sec for Task B, 8 rad/sec for
Task C). For low levels of noise/signal, a lower score is asso-
cilated with Task C. We would expect this to be the case, since
the greater separation between signal and nolise bandwidths for
this task should allow the subject to distinguish signal from
nolse more accurately. The higher nolse bandwidth associated with
Task C, however, becomes a llability when the human's noise/signal
ratio is relatively large, because the observation noise level as-
soclated with veloclity perception 1s proportional to the variance
of indicator veloclty. Thus, for high noise/signal levels, vel-
ocity perception degrades more for Task C than for Task B, with
the result that Task C now becomes the more difficult of the two.
For a noise/signal ratlo of -20 dB, predicted decision scores are
essentially identical for Tasks B and C.

The numerical value chosen for the human's time delay does
not appear to affect the relationships among the four curves
shown in Figure 4. The relation between decision error and noise/
signal ratio is shown for three time delays in Figure 5 for the
easlest and most difficult of the four declsion tasks. As expected,
an increase in time delay will yield a higher decision error for
a given level of human noise/signal. The shape of the error-vs-
noise/signal curve does not depend on time delay, however, and the
effects of task parameters on declision error are unaffected by
time delay. Thus, the same incerement in decislon error is pre-
dicted for a particular chanpge in task parameters or for a change
in noise/signal ratio from one specific level to the next when
the time delay lies within the range of 0.1 to 0.3 second.
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The converse 1s not true, however, when one attempts to infer
an increment in observation noise level from a palr of decision
error scores. For example, the palr of scores 0.10 and 0.15 rep-
resents about a 9 dB increment in noise ratio for Task A when a
time delay of 0.2 second is assumed, but only a 6.5 dB increment
when a 0.1 second delay is considered. If we iIntend to infer
noise/signal ratios from experimental decision scores, then our
interpretations could be appreciably in error if the subject's
true delay were markedly different from the 0.2 second that we
have assumed. We have, however, found average time delay to lie
within a relatively narrow range about this value for the various
manual control experiments that we have conducted. Accordingly,
we do not expect to introduce appreciable modelling error by
assuming an effective time delay of 0.2 second for the decision

tasks.

The foregoing analysis has been conducted on the assumption
that the subject will select a decision boundary equal to the tar-
get boundary; that 1is, he will hold the response button down when-
ever he estimates the "signal" to be within the target. This
would appear to be the optimal decision strategy for the situations
we have investigated; namely, where the a priori probability of
the signal being on target is 0.5 and the costs of either type of
decision error are egual. It 1s nevertheless possible that the
subject will adopt a utility matrix that differs somewhat from
that assigned by the experimenter, in which case the decision
boundary will not coincide with the target boundary. This is
especially likely 1f the total decision error is relatively in-
sensitive to the selection of a decision boundary. Accordingly,
we have analyzed the easiest and most difficult of the experimental
declision tasks to determine the relation between decision error

and decision boundary.
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Let DEl be the probability of a "false alarm"; i.e., the
joint probability that the signal will be outside the target area
and that the subject wlill respond otherwise. Conversely, let DE
be the probabllity of a "miss"; i.e., the fraction of time that
the subject fails to respond properly when the signal is on target.
The total decislon error is defined as the probability of either
+DE.. For the situation

0 1l
In which equal costs are assigned to the two types of decision

0

type of decision error and is simply DE

error, the overall performance measure 1s identical to the total
decision error.

In Figure 6 we show the effects of the decision boundary on
the component and total decision error scores for Tasks A and D.
The independent variable shown on the abscissa is the decision
boundary YD’ normallized with respect to the target boundary YT'
The decision area is assumed to be symmetric about zero: i.e.,
the subject indicates a "hit" whenever he estimates the signal to
be within the 1limits of —YD and +YD.

For Task D we find that total error remains within 10 percent
of the optimal error score for decision boundaries that range from
20 percent below to 20 percent above the target boundary. The
component error scores, however, change markedly with a shift in
the decision criterion. For YD/YT = 0.8, the predicted miss rate
is about twice the false alarm rate. Conversely, for YD/YT = 1.2,
the false alarm rate 1s about three times the mlss rate. Decision
performance for Task A 1s somewhat more sensitive to decision cri-
terion in that a ten percent deviation in the decision boundary
has the same effect on total error score. The relative magnitudes
of the component scores show the same trend as 1s observed for
Task D. In summary, we see that the subject may effect a consid-
erable trade-off between false-alarm and miss rates without
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seriously affecting his total score. In this sense, overall de-
cision performance 1is relatively insensitive to decision criterion.

3.4.2 Multiple-Task Performance

It has been amply demonstrated that the human's performance on a
given task generally degrades when a multiplicity of tasks are
performed concurrently. We have shown thls to be true for certain
manual control situations, and we have developed and validated a
model to account for the effects of task interference in multi-
variable continuous-control sltuations (Refs.9 and 10). This
model may be applied in a straightforward manner to predict per-
formance on multiple-decision tasks.

Task interference 1s assumed to manifest itself as an increase
in the human's internal noise/signal ratio according to the fol-
lowing relationship

P, = Po/fi (18)

where Po is the noise/signal ratio that correspondihto single-task
performance, Pi is the ratio associated with the 1 subtask 1in a
multi-task situation, and fi is the fractlon of attention devoted
to that subtask. This relationship may be used in conjunction
with the curves shown in Figure 4 to predict multi-task decision

performance as follows.

Let us assume we first perform a calibration experiment in
which we measure performance on a single decision task. The ap-
propriate theoretical curve 1s used to determine the noise/signal
ratio Po that corresponds to this level of performance. If we
know how much attention the subject will devote to the decision
task in the multi-task situation, we increment the noise/signal
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ratio by the amount indicated in Equation (18) and refer again to
the appropriate theoretical curve to predict the multi-task score.
If we do not know a priori how the subject will allocate his at-

tention, we obtaln curves of performance versus attention for each
component task and use these to determine the allocation of atten-

tion which minimizes some measure of total-task performance.

To 1llustrate this procedure, let us analyze the situation
in which the subject is required to perform Tasks A and D simul-
taneously. The performance index to be minimized is the combined
decision error, which is defined as the summation of the total
declslion error scores for the two component tasks. We assume that
the subject has a relatively fixed information-processing capacity
which he applies fully to his decision task, however complex or
simple that task may be. In other words, his fractions of atten-
tion must sum to unity over the component tasks. Thus, if the
subject devotes the fraction fA to Task A in the two-task situa-
tlon, he will devote the fraction fD = 1-—f‘A to Task D. The noise/
signal ratios associated with the two tasks will be:

P, = Po/fA

(19)

s}
i

= Po/(l—fA)

Using these relationships, along with the theoretlcal curves re-
lating decision score to noise/signal ratio, we can compute com-
ponent and total declsion scores as a function of attentional

allocation. The predicted (optimal) division of attention 1s the

one which corresponds to the minimum total performance score.
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Predicted component and total decision error scores are shown
in Figure 7 as a function of the fraction of attention devoted to
Task A. (A noise/signal ratio of -20 dB is associated with full
attention.) We note that the component decision error scores are
relatively insensitive to lack of attention and that an increase
in one of the component scores is, to some extent, compensated for
by a decrease in the other component score as the allocation of
attention changes. Consequently, the combined decision error
score 1s extremely insensitive to the subject's division of atten-
tion. This score remains within 10 percent of its minimum value
as the subject's attention ranges from 80'percent on Task A to
80 percent on Task D. Previous analysis of multi-axis tracking
tasks with stable dynamics has also indicated a relative insensi-

tivity of total-task performance to division of attention. (See
References 9 and 10.)

Because of the insensitivity of total-task performance to
attention, we cannot expect to validate our method for predicting
division of attention using decision tasks of the type we have
been investigating. We can, however, test the accuracy of the
model to predict the effects of interference on the total perform-
ance score. For example, in the absence of interference, the com-
bined scores for Tasks A and D would be about 10 percent less than
the optimal score predicted in Flgure 7. Since performance on
Task A is the most sensitive to noise/signal ratio of all the de-
cision tasks considered in this study, a larger fractional in-
crease in total score would be expected if two tasks of type A
were performed simultaneously. The subject would presumably de-
vote 50 percent of his attention to each component task on the
average, and the decision error score for either task would in-
crease by about 17 percent. This latter situation has been in-
vestigated experimentally, and in Section 4.2 of this report we
show that theoretical and experimental results are in good
agreement.
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11 Maclr A

The analysis procedure described above may also be employed
to predict human performance when a decision task is performed
concurrently with a continuous control task. 1In this case, the
theoretical relation between some measure of tracking performance
(say, mean-squared error) and the human's noise/signal ratio is
used, along with the corresponding curve for decision performance.
Ve again find the division of attention that corresponds to mini-
mum total score, where the "total score" might be specified as a
welghted sum of decision error plus mean-squared tracking error.

Since continuous tracking tasks differ from decision tasks
in many respects, it is not obvious that the same noise/signal
ratio Po should be associated with "full attention™ for both
tasks. We have seen that the ratio corresponding to single-task
performance may depend on the sensitivity of performance score
to noise/signal ratio (Ref.9). In general, this sensitivity is
greater for most laboratory tracking tasks than for the declsion
tasks considered here. Furthermore, we would expect the subject's
noise/signal ratio to depend on how well the subject had learned
the task. This is especially true for the decision task, where
the noise/sipgnal ratio must be inferred from the decision error

score.

Accordingly, we shall add an additional degree of freedom to
the model for task interference when the tasks are qualitatively
different from one another. For the situation in which concurrent
performance of a single decislion and a single tracking task is to
be analyzed, the model of Equation (19) 1is revised as follows:

Pp = POT/fT
(20)

o
0

PO /(l-fT)
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where the subscripts T and D refer to tracking and decision per-
formance, respectively. Experimental results on combined tracking
and decision performance are presented in Section 4.3.

3.5 Model-Validation Procedures

The model for the optimal decision-maker described above can
be used to predict the fine structure of the human's decision
strategy as well as to predict overall decision performance. For
example, one can obtain a predlcted describing function whlech
represents the subject's optimal estimation strategy: i.e., the
linear transfer between the displayed variable y(t) and the best
estimate of the signal, 8(t). In addition, one can investigate
the "remnant" portion of the decision strategy, which is simply
the spectrum of the estimation error se(t).

Precise measures of these frequency-domain descriptors cannot
be extracted from the experimental data, however. Unlike the task
of continuous control, the decislion task does not require the
subject to respond in a manner that is linearly related to §(t).
Thus, we can test the model only with respect to 1lts ability to
predlct decision error scores.

A varlety of experimental conditions is reaquired to test the
predictive accuracy of the model. ‘This is so because the model
contains two "free" parameters relating to human limitations (ef-
fective time delay and noise/signal ratio). Either of these pa-
rameters could be adjusted to match the subject's decision per-
formance under any given condition. Thus, we must explore the
model's abllity to predict differences in decision performance
that arise from variations in the parameters of the task. Ideally,
we would hope to find that performance differences of this type
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could be accounted for with fixed values for time delay and for
single-task noise/signal ratio.

The same model-validation technique applies to the tracking
task in the combined tracking and decision task. That is, we
determine the extent to which tracking performance alone and
tracking performance in the two-task situation can be matched by
a consistent set of model parameters.*

-
Because the hardware was not available for 1linking to BBN's

digital computer, we were not able to analyze pilot describ-
ing functions and remnant spectra as we have usually done in
the past. Consequently, model-matching was performed by se-
lectling noise/signal ratios and subjective cost functionals

to match the available performance scores (mean-sauared track-
ing error, error rate, and control displacement). Time delay
was held fixed at 0.17 second and motor noise at about -25 dB--
values that have been found to be typical of K/s tracking.

We do not feel that the validity of our analyvsis has suffered
appreciably from the lack of frequency-domain measures. We
have analyzed K/s tracking performance many times in the past,
and we have found that model parameters which closely match

the performance scores will usually reproduce accurately the
describing functions and remnant spectra. (See References 4-10.)
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4. THE EXPERIMENTAL PROGRAM

An experimental program was undertaken to test the validity
of the model for decision-making presented in the preceding chapter
and to provide additional tests of our model for task interference.
The following situations were explored: (a) single decision tasks,
(b) multiple decision tasks, and (c) simultaneous control and
decision-making. The principal results of these experiments are
presented in this chapter.

Because of certain methodological problems associated with
the particular decision task used in this study, not all of the
experimental results provided a conclusive test of the model.
This was particularly true for the experiment on simultaneous
decision and tracking. These and other factors relating to dis-
crepancies between theory and experiment are explored in some
detail in the discussion of results given in Chapter 5.

4.1 Effect of Task Parameters on Decision Error

An experiment was conducted to determine the effect of changes
in task parameters on decision error and on inferred noise/signal
ratio. Our primary objective was to test the predictive capability
of our model. Specifically, we wished to determine the extent to
which decision performance could be predicted by a model with
fixed values for the human's time delay and noise/signal ratio.

4,1.1 Experimental Procedures

Four subjects were provided with six training trials on each o?
the four decision tasks described in Section 3.2. Experimental
conditions are summarized in Table 1. Following training, three
"data" trials were conducted with the right-hand and left-hand
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displays active. SubjJects responded to only one signal during a
given trial, with the remaining signal clamped at zero displace-
ment. Additional details on subject training are given in
Appendix A.

TABLE 1

EXPERIMENTAL CONDITIONS FOR SINGLE-TASK DECISION EXPERIMENT

5 o Bandwidth of

Task o,/0, n(t)(rad/sec)
A 55 8
B 22 Y
C 22 8
D 5.5 8

Bandwidth of s(t) = 0.5 rad/sec

The average decislion error score served as the primary per-
formance measure. The "decislon error" was defined as the frac-
tion of run time during which the subject was not indicating the
true state of the signal s(t). This score was computed as the sum
of two component error scores: the "false alarm” rate (the frac-
tion of time the subject decided that s(t) was inside the target
when it was actually out) and the "miss" rate (the reverse type
of decision error).

The standard deviation of the total decision error score was
estimated. This was deflned as
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z:(DEi—DE)
STD DEV ={i=1 (21)
N(N-1)

where DEi is the average score of the ith subject for a particular
task, DE is the average score for all subjects on that task, and

N is the number of subjects (in this case, 4). A mean noise/signal
ratio was inferred for each task by reference to the appropriate
theoretical curve (Figures C-1 to C-4, Appendix C). Standard de-
viations were estimated for the noise/signal ratio as follows.
Ratios were found which corresponded to the mean decision error
plus (and minus) one standard deviation; the absolute value of the
difference between these noise ratlos, divided by two, was taken

as the approximate standard deviation.

4.1.2 Principal Results

Figure 8 shows the effects of task parameters on predicted and
measured average declsion performance. Standard deviations for

the measured scores are also shown. Predictions were obtalned with
nominal values of 0.2 sec and -~20 8B assipgned to the time delay

and noise/signal ratio parameters of the model.

For the most part, predicted and measured scores were in very
good agreement. For Tasks A, B, and C, the measured decision
error score varied by less than one standard deviation from the
theoretical prediction. The decrease in "instrument noise" band-
width from 8 to U rad/sec did not appreciably affect decision
performance. (We had predicted that this would be the case 1if
the human's noise/signal ratio were -20 dB.) The only notable
discrepancy between theory and experiment occurred for the most
difficult task (Task D); in this case, the measured score was
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about 11 percent greater than the predlicted decision error. A t-
test performed on the subject means revealed that this difference,
while small in absolute terms, was significant at the 0.05 cri-
terion level,

Average scores for each subject are shown 1in Table 2. Also
shown are the ratlos of false alarm to miss rates, along with the
noise/signal ratios inferred from the decision error scores. The
false alarm rate was, on the average, about twice the miss rate
for each of the four decision tasks. From Fipgure 6 we note that
the false alarm rate should be about 50% greater than the miss
rate for minimum total score. Furthermore, total score is shown
to be relatively insensitive to a moderate trade~off between the
false alarm rate and the miss rate. Thus, 1t would appear that
the subjects adopted decision criteria that were appropriate to
the tasks.

Decision error versus inferred noise/signal ratio 1s shown
graphically for Tasks A, C, and D in PFipure 9. Rectangular boxes
about each datum point indicate +1 standard deviation of both the
error score and the noise/signal ratio. (The results of Task B are
not shown in this figure since they almost colncide with the re-
sults of Task C.) The theoretical curves of Figure 4 are superim-
posed on the experimental results.

Figure 9 shows that the nolse/signal ratio Increases almost
linearly with decision performance, ranging from -20.0 4B for
Task A to -15.6 dB for Task D. Since the ratios inferred for
Tasks A, B, and C lie within one standard deviation of one another,
we cannot ascribe any statistical significance to these differences.
The noise/signal ratios assoclated with Tasks A and D, however,
differ by about two standard deviations; thils difference is too
large to dismiss simply as experimental varliability.

Overall, we conclude on the basis of this experiment that the
model for decision-making described in thls report has good predic-
tive capabllity with respect to the class of decision tasks explored.
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TABLE 2

EFFECT OF TASK PARAMETERS ON DECISION
ERROR AND INFERRED NOISE/SIGNAL RATIO

Subject Task A Task B Task C Task D
Decision Error
DB L142 .148 172 .225
MH .114 .123 .125 .212
WK .108 .168 .151 .199
DM .090 .126 .137 ".193
Mean .114 .141 L1146 .207
Std. Dev. .0108 .0105 .0101 .0071

Ratio: (False Alarm Rate)/(Miss Rate)

DB 3.9 3.1 2.1 3.2
MH 1.7 1.5 1.8 1.3
WK 2.2 1.8 2.4 2.2
DM 1.6 1.6 2.2 1.9
Mean 2.2 1.9 2.1 2.0

Inferred Noise/Signal Ratio (dB)

-19.0 -18.6 -15.6

Mean | -20.0

Std. Dev. 2.5 1.7 2.2

2.5

Average of 3 trials/subject.
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Using fixed values for human time delay and noise/signal ratio,
we have been able to predict decision scores to within 11 percent
or better. At the same time, we note that wide range of noise/
signal ratios 1is needed to match all decision scores perfectly.
Factors which contribute to this latter result are discussed in
Chapter 5.

4.2 Multiple Decision Tasks

This experiment was performed to validate our model for task
interference in a decision-making context. Decision error scores
were obtained for tasks performed singly and two at a time, and
the difference between the 2-task and l-task scores was tested
against the difference predicted by the model.

4.2.1 Experimental Procedures
The subjects were provided with two decision tasks of the type
ldentified as Task A in Table 1, The statistics of the left-
and right-hand tasks were nominally identical, but the two dis-
play variables were linearly uncorrelated.* When two tasks were
performed concurrently, the subjects were instructed to minimize
the sum of the decision errors assoclated with each component
task. The same four subjects who participated in the single-task
experiment were used in this study.

After having been trained to an apparent asymptotic level of
performance on the two-task situation, each subject performed
four data sessions. Each session consisted of three trials:

¥ﬁe originally had intended to vary the relative difficulty of
the left- and right-hand tasks in an attempt to manipulate the
subjects' division of attention. Pre-experimental model analysis
revealed, however, that overall decision performance would be
relatively insensitive to attention, even when the component de-
cision tasks differed considerably. (See the analysis presented
in Section 3.4.2.) Hence, we decided against using task diffi-
culty as an experimental variable.
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(a) a single task for the left hand, (b) a single task for the
right hand, and (c¢) left- and right-hand tasks together.

4.2.2 Principal Results

Average decision error scores are shown in Table 3 for each sub-
Ject for each task condition. Also shown are the scores averaged
over the left and right tasks along with the average differences
between 2-task and l-task scores. Average decision error increased
from 0.110 to 0.130 — an increase of about 18% — as the second
task was added. A t-test showed this difference to be significant
at the 0.001 level.

TABLE 3

EFFECT OF NUMBER OF TASKS ON DECISION ERROR
INFERRED NOISE/SIGNAL RATIO

Average
Left Task Right Task Left and Right Tasks

Subject 1-Task|2-Task|1-Task |2-Task |1-Task 2—Task|Difference

Decision Error

DB .134 .160 .124 .137 .130 .148 .018
MH <112 131 .096 .114 .104 .122 .018
WK .115 .138 .104 123 .109 .131 .021
DM .098 <117 .094 .118 .096 .118 .022
Average .115 .136 .104 .123 .110 .130 .020
Std. Dev.|.0074 .0090 |.0068 .0050 |.0072 .0067 .0010

Average of 3 trials/subject
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If our model for task interference is valid in this decision
context, then the observed increment in decision score (averaged
across the two tasks) should correspond to a doubling of the sub-
Jects' noilse/signal ratio (again, averaged across the two tasks).
In order to obtain a theoretical prediction for 2-task performance,
we must refer to the theoretical curve of Figure C-1. From this
curve we assoclate a noise/signal ratio of -20.8 dB with the aver-
age l-task score of 0.110. Taking thls point as a reference, we
derive the curve shown in Figure 10 which relates the predicted
increment in decision error to increments in noise/signal ratio
(alternatively, to decrements in "attention"). The curve shown

in the figure, then, is a segment of the theoretical curve of
Figure C-l.

The increments in decision error and inferred noise/signal
ratio that we obtained experimentally are shown in Figure 10 for
comparison with the theoretical curve. The range of decision
error and noise/signal ratio corresponding to +1 estimated stand-
ard deviation are also indicated. The increase of 0.020 in deci-
sion errors score that we measured corresponds to an increment of
3.3 dB in the inferred noise/signal ratio. This increase is with-
in one standard deviation of the 3 dB increment predicted by our
model for task interference. Similarly, the assumption of a 3 dB
increment 1in noise/signal ratio leads to a predicted increase in
error score of 0.018. A t-test of the average 2-task, l-task dif-
ference scores shows that this prediction is not significantly
different from the measured increase of 0.020. On the basis of

this very good agreement between theory and experiment, we con-
clude tentatively that our model for task interference is applic-
able to the type of decision task explored in this study.
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4,3 Simultaneous Control and Decision-Making

The experliment described above confirmed that the model for
task interference, which had been validated previously in multi-
varlable control situations, could also be applied successfully
to multi-~task decision situations. The third and final experiment
was conducted to determine whether this same model would account
for interference between a decision task and a continuous control
task performed concurrently.

4.3.1 Experimental Procedures

The subjects were presented with two tasks to be performed concur-
rently: a decision task (Task A, as described previously), and a
continuous manual control task. The latter was a compensatory

K/s tracking task of the type used in previous studies. The dis-
play format shown in FFigure 2 was used, with the decision variable
displayed on the left and tracking error displayed on the right.
Display/response compatibility was maintained. The primary track-
ing performance measure was mean-squared tracking error; decision
performance was measured in terms of decision error, as defined
earlier in this chapter.

A diagram of the tracking task is given in Figure 11, All
gains 1n this diagram are given in terms of units that correspond
to settings of analop computer elements., Similarly, all mean-
squared signal scores tabulated in this report are in terms of
analog readings. Conversions factors are provided in Table 4 so
that the reader may convert these scores to psychophysical units.

The input forcing function was constructed of 13 sinusoids

to resemble a first-order noilse spectrum with a critical frequency
at 2 rad/sec. (See Appendix A of Reference 9 for additional
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TABLE 4

CONVERSION FACTORS FOR MEAN-SQUARED SIGNAL SCORES

details on the input.) In the absence of control activity, the
input signal represented an rms velocity disturbance of approxi-
mately 3.7 degrees/second of visual arc. The control gain was
such that 1 newton of force imparted a velocity of 4.6 arc-degrees
per second to the error signal.

The subjects' instructions were to minimize decision error
(DE) when performing the decision task alone, to minimize mean-
squared tracking error (02) when performing the tracking task
alone, and to minimize a weighted sum of decision error and mean-
squared tracking error when performing the two tasks concurrently.
The overall performance measure for the two-task situation was
defined as J = 02 + 3 - DE. The subjects were not instructed as
to how to apportion their total score among the component scores.
Additional details on the training procedure may be found in
Appendix A. Three of the subjects who had participated in the

previous experiments were not available for this experiment and
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were replaced by three new subjects. The newcomers were famili-
arized with the single-task decision situation, and all four sub-
Jects were tralred to apparent asymptotic performance on the
tracking task ancd on the combined decision-plus-tracking task.
Data-takling consisted of at least three sessions of three trials
each as described for the previous experiment.

4.,3.2 Principal Results

Because subject-to-subject variability was quite high in this
experiment, we have not averaged the performance scores across
subjects. Instead, we examine the average performance of each
subject separately.

Performance measures are shown for each subject's decision
error, tracking error, and total performance score in Figure 12.
One-task and two-task performance measures are compared. The
l-task total performance measure is defined as the sum of the mean-
squared tracking error obtained when tracking was performed alone,
plus three times the decision error that was obtained when the
declision task was performed alone. This measure is the total
score that we would predict for the 2-task situation if we were
to assume no interference. DMeans and standard deviations for all
performance measures (including mean-squared error rate and con-
trol force) are given in Table 5.

All of the 2~task, 1l-task differences are in the expected
direction. That 1is, each subject yielded higher performance
scores in the 2-task situation than in the l-task situation.

This was true not only for the total performance measure but also
for the component scores as well (including error-rate and con-
trol scores). The magnitude of these differences, however, varied
quite a bit from subject-to-subject. The fractional increase in
total performance score ranged from about 5% (subject WK) to about
45% (subject) WR). The remaining two subjects (KC & HH) exhibited
approximately a 15% increase in total score
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TABLE 5

AVERAGE PERFORMANCE SCORES FOR DECISION AND TRACKING

Scope 1-Task 2-Task
Mean S.D. Mean S.D.

a) SUBJECT KC

DE .111 .003 .123 .008
3-DE .333 .009 .369 .024
o? .150 .006 .186 .003
of 5.25 .192 6.14 .270
o? .288 .010 .309 .011
og + 3.DE . 483 .026 .555 .009
b) SUBJECT HH
DE .125 .00l .143 .007
3.DE .375 .012 129 .021
o2 .178 .006 .202 .005
of 5.14 .336 6.60 .2L0
ol . 284 .014 .336 .087
o2 + 3.DE .553 .012 .631 L0214
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TABLE 5 (Cont.)

Scope l1-Task 2-Task

Mean S.D. Mean S.D.
¢) SUBJECT WK

DE 142 .002 .149 .003

3-DE U426 .007 LauT .008

02 .251 .006 .264 .011

02 4.70 .180 6.48 .189

oi 244 .009 .313 .021

02 + 3-DE 677 .010 711 .012
d) SUBJECT WR

DE .200 .006 .311 .026

3<DE .600 .019 .933 .078

02 . 266 .015 .312 .024

og 5.30 .096 6.52 . 1480

oi .267 .008 .32 .020

cg + 3-DE .866 .015 1.25 .096

SD = Estimated standard deviation of the mean
Average of U trials/subject for subjects KC, HH, and WK
Average of 3 trials for subject WR
Tracking performance scores in analog-machine units

All scores in experimental units




The data obtained from subjects WK and WR were considered
unsultable for providing a meaningful test of the model for task
interference, and no further analysis was performed on these re-
sults. WR's results were omitted because of the atypical per-
formance of this subject on the decision task. Figure 1l2a shows
that his 2-task decision score was fully twice that of any other
subject, and his 1l-task decision score was appreciably larger
than that shown by any of the other six subjects who participated
in this experimental program. (His l-task score of 0.20 corre-~
sponded to an unreasonably large noise/signal ratio about -11 dB.)

The data from subject WK were also omitted from further con-
sideration because of anomolous performance on the declsion task.
In particular, this subject's 1l-task score was not self-consistent.
Table 2 reveals that he achlieved a decision error score of about
0.11 on this task in the first experiment: this score rose to 0.14
in this (the third) experiment, even with the benefit of additional
practice on the 1l-task decision situation. Thus, we do not know
whether the very low level of task interference revealed by this
subject's performance is a meaningful result, or whether it indi-
cates that the subject was not working to full capacity when per-
forming the decision task alone. The anomolous behavior of sub-
Jjecets WK and WR 1s discussed further in Chapter 5.

The model for simultaneous tracking and decislon performance
was tested against the data obtained from subjects KC and HH.
The first step in this procedure was to select model parameters
to match the l-task decision and tracking performance of each sub-
ject. Decision performance was matched by using the curve of
Figure C-1 to find the noise/signal ratios that corresponded to
the decision error scores. Similarly, noise/signal ratios were
chosen to provide perfect matches to the 1l-task mean-squared
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tracking error scores. Values for the time delay and motor nolse
parameters were selected on the basis of previous manual control
studies (Refs. 6-10), and a lag time constant was selected to
match the l-task error-rate and control scores to within 10 per-
cent. Numerical values for these parameters are given in Figure
13. This figure also shows the theoretical relationship between
the various tracking performance measures and the noise/signal
ratio.* Superimposed on these curves are the average l-task
scores for subjects KC and HH.

Table 6 shows the noise/signal ratios that were associated
with l-task decision and tracking performance. These ratios were
considered to represent "full attention", and theoretical curves
of task performance versus attention were obtained according to
the procedure described in Section 3.4.2. All model parameters

other than noise/signal ratio were held fixed for this analysis.
TABLE 6

NOISE/SIGNAL RATIOS CORRESPONDING TO "FULL ATTENTION"

Task Subject
KC HH
Decision -20.6 | -18.2
Tracking -22.81-20.8

Figure 14 shows the predicted 2-task performance scores for
combined decision and tracking for subjects KC and HH. Total

¥The theoretical relation between mean-squared tracking error and
noise/signal ratio is shown on an expanded scale in Figure C-5
of Appendix C. In this appendix we discuss more fully our selec-
tion of values for model parameters.
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performance, tracking error, and weighted decision error scores

are shown as a function of the fraction of attention paid to the
tracking task. From this figure we predict that each subject
should devote about half his attention to each task for optimal
performance. We note, however, that total performance is rela-
tively insensitive to attention in the vicinity of this theoretical
op timum.

Superimposed on the theoretical curves in Figure 14 are the
theoretical 2-task performance scores which correspond to no in-
terference and to full interference. Also shown are the 2-task
scores that were obtained experimentally. The "no interference"
theoretical scores are simply the scores obtained in the 1l-task
experiments. (The no-interference total score is the welghted
sum of the l-task tracking and decision error scores.) The "full
interference" scores are the ones predicted by our model for task
interference. These scores are obtained from the theoretical
curves of Figure 14 for a 50% allocation of attentlon to the track-
ing task (which is the allocation of attention that yields the
lowest predicted total score).

Both subjects achieved 2-task total scores that fell between
the theoretical scores associated with no interférence and with
full interference. Thus, the mutual interference between the
tracking and decision tasks was not as severe as was predicted by
the model. Whether or not the measured 2-task scores differ sig-
nificantly in a statistical sense from either of the theoretical
scores 1is questionable. T-tests performed on the data from either
subject alone do not reveal differences significant at the 0.05
level. On the other hand, statistical significance is obtained
if we pool the data of these two subjects (that is, if we treat
the data as eight replications obtained from a single subject).
T-tests then show that the average 2-task total performance score
differs from the average no-interference score at the 0.01 level
and from the average full-interference score at the 0.05 level.
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Since we have reliable results from only two subjects, we
cannot claim with a high degree of assurance that our model for
interference either does or does not apply to the combined deci-
sion and control situation. There appears little question that
interference does occur: all four subjects yielded higher total
and component scores in the 2-task situation. The degree of in-
terference remains 1n question. Accordingly, we must conclude
at this stage that the model which we have proposed for combined
decision-making and control shows promise, and that a conclusive
set of experiments remains to be conducted.

We suspect that the inability to obtain reliable, conclusive
data in this third experiment was due, in part, to the apparent
insensitivity of the total performance score to attention. Note
that we can predict the combined-task performance score to within
15 percent with elther the full-interference or no-interference
concept Incorporated into the model. 1In order to obtain a more
conclusive set of results, a task should be explored which 1is
more sensitive to attention (i.e., more sensitive to the noise/
signal parameter of the model). The problem of insensitivity to
noise/signal ratio is discussed more fully in Chapter 5, and in
Chapter 6 we suggest an experiment which may largely avoid this
particular drawback.
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5. DISCUSSION OF RESULTS

Agreement between theory and experiment was quite good for
the situations involving only decision-making tasks. Decision
error scores were predicted to within an accuracy of about 10
percent in both 1- and 2-task situations. Agreement was less
good for the task of simultaneous decision-making and contlnuous
control, with prediction errors on the order of 15 percent.
Although the differences between predicted and measured perfor-
mance scores were not large in an absolute sense, these dif-

ferences cannot be entirely ascribed to "experimental variability."”

We suspect that certain methodological problems assoclated
with the experimental decision task contributed to the discre-
pancy between theory and experiment. These problems are
discussed below. In the subsequent section of this chapter,
we suggest two refinements to the model which might improve
the predictive accuracy of the model.

5.1 Methodological Considerations

In order for us to explore the limitations of human psycho=-
motor performance, we should, if possible, use an experimental
task which is designed to motivate the subject to work to near-
full capacity. Moreover, if the experimental results are to be
meaningful, the task should be one for which the subject can
readily learn the appropriate (i.e., optimal) response strategy.
The particular decislon task used in this study was somewhat
deficient on both counts, as we shall show below.
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If i1t were possible to obtain a describing function and
remnant spectrum for the human's decision strategy, we could
assess the relative importance of the motivational and learning
problems. In the sense that "motivation" is reflected by the
degree to which the human suppresses his internal noise, an 1in-
dicatlon of motivation could be obtained by a linear transforma-
tion of the remnant spectrum to an equivalent observation noilse
process. Comparison of theoretical and measured describing
functions would reveal the extent to which the subject had
learned the optimal strategy. Unfortunately, the intermittent
nature of the subject's response precludes any such analysis;
we can only speculate on the importance of these factors.

5.1.1 Insensitivity of Performance to Noise/Signal Ratio
Perhaps the most serious drawback of the decision task which we
explored—at least wlth respect to testing the model—was the
relative insensitivity of decision error to the human's noise/
signal ratio. This insensitivity may be largely responsible for
the wide range of noise/signal ratios needed to match all the
single~task decision scores perfectly (Figure 9).

The human apparently attempts to suppress hils internal
nolse to a greater extent as the sensitivity of performance to
noise/signal ratio increases. In a study of manual control
performed under an earlier NASA-ARC contract, we found that our
pilots achieved noise/signal ratios on the order of -26 dB when
tracking unstable second-order dynamics (Ref. 9). Earlier studies
conducted with a variety of stable controlled-element dynamics
had revealed noise/signal levels of about -20 dB (Refs. 4-8).
Model analysis showed that the sensitivity of mean-squared
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tracking error to noise/signal was considerably greater for the
unstable dynamics than for the stable dynamics. Thus, the sub-
Jects were apparently willing to operate at an unusually low
Tevel of Internal noise if the payoff was sufficient. Jex and
Magdeleno have reported data which support this conclusion
(Ref. 15).

The theoretical curves of Figure 4 show that the sensitivity
of decision error with respect to the human's noise/signal ratio
decreases as the task difficulty increases. For a doubling of
the noise/signal ratio from -20 dB to -17 dB, the decision error
for Task A increases about 17 percent, whereas an lncrease of
only about 5 percent is observed for Task D.¥ (The same increase
in noise/signal ratio corresponds to a 44 percent increase in
mean-squared error for the K/s tracking task used in this study.)
Thus, it is entirely possible that the subjects were insufficlently
motivated to maintain a -20 dB noise/signal ratio when performing
Task D.

Task-induced motivation may explain, in part, the tendency
of the subjects to perform better than predicted in the combined
decision and control task. One simple explanation of these re-
sults is that the subjects "worked harder" in the 2-task
situation in this particular experiment. As a measure of how

¥0ne would expect the sensitivity of decision error to the
human's noise to decrease as the amount of simulated "instru-
ment noise" is increased. Since the experimentally added
noise was greatest for Task D, the proportion of total system
noise attributable to the human was least. Thus, a given
percentage increase in the human's noise reoresented a rela-
tively lower percentage increase in total system noise for
Task D than for the remaining decision tasks.
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much harder the subjects worked, we can compute the amount of
attention that the subjects devoted to each of the component
tasks in the 2-task situation. Attention is defined as

arty = p¢1),/p(2)

where P(l) and P(2) are the noise/signal ratios assoicated with
the l-task and 2-task performace measures, respectively. The
noise/signal ratios, in turn, are derived from the error scores
as described previously.

Levels of attention associated with 2-task performance are
shown for subjects KC and HH in Table 7. The "total attention"
levels given in this table are simply the summations of the
attention levels associated with the component tasks. Also
shown in Table 7 are the decision error and tracking error
scores, along with the inferred noise/signal rations, for the
1l- and 2-task situations. From this table we observe that we
can account for combined decision and tracking performance if
we assume that subjects KC and HH increased their "attentional
capacities" by 21 percent and 33 percent, resnectively in the
2-task situation.

Now, we have shown that humans tend to lower their internal
noise levels (which, we suggest, 1s equivalent to increasing
the level of attention) as the sensitivity of performance to
nolse/signal ratio increases. Accordingly, let us compute the
sensitivity of the total decision-plus-performance score with
respect to noise/signal. In order to simplify the computation,
we shall assume that a 50-percent dlvision of attention between
the two component tasks allows near-optimal performance. (See
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TABLE 7

PERFORMANCE SCORES AND INFERRED LEVELS
OF ATTENTION FOR COMBINED DECISION AND CONTROL

SUBJECT KC SUBJECT HH

Task Variable 1-task 2-task | 1-task 2-task
o2e .150 .186 .178 .202

Control P(dB) -22.8 -20.5 | -20.8 ~19.6
ATTN - .59 - .76

DE .111 .123 .125 .143

Decision pP(dB) -20.6 -18.5 -18.2 ~-15.8
ATTN -~ .62 - .57

Total ATTN - 1.21 - 1.33

the theoretical curves of Figure 14.) Thus, a "full capacity"
noise/signal ratio of -20 4B for the decislion and tracking
tasks performed separately implies ratios of -~17 dB each of

the two tasks when performed concurrently. A doubling of the
full-capacity noise/signal ratio is represented by -14 dB on
each task. Using the curves of Figures C-1 and C-5, we find
that this increase in noise/signal ratio corresponds to an
increase in total performace score of about 38 percent, where
total performance is defined as the mean-squared tracking error
plus three times the decision error. Thils fractional increment
1n performance score is about twice that which we predicted
above for the decision task alone. Thus, 1t 1s reasonable to
expect that the subjects were more strongly motivated to reduce
thelr internal noise levels when performing the combined task
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(or when performing a single tracking task) than when performing
a single decision task.

5.1.2 Learning Difficulties

The subjects may have encountered difficulty in learning the
strategies appropriate to the various decision tasks Because of
inadequate knowledge of results during the training period. The
only knowledge of performance given to the subject was the deci-
sion error score that was told to him at the end of each training
trial. Thus, if the subject were to try various strategies during
the course of a single trial, he would not know which of the
variations was best.

The difficulty in providing the subject with continuous
feedback during the trial arises from the open-loop nature of the
task. That is, the subject's response behavior has no influence
on the signal shown on his display as it does, for example, when
the subject is actually controlling the signal. Various methods
of presenting relatively instantaneous knowledge of performance
were considered (such as illuminating a light whenever the sub-
Ject's response was incorrect). These ideas were rejected,
however, because of the high probabilify that the subject would
learn to respond to the performance indicator and not to the
signal on the primary display. To some extent, then, the re-
latively large noilse/signal ratio inferred for decision Task D
may reflect an inappropriate estimation strategy on the part of
the subject.

One of the subjects (WR) had a particularly severe learning
problem. He did not lack for motivation; he appeared genulnely
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concerned about the quality of his performance on the decision
task. We attempted to improve his performance by providing de-
talled explanations of the task and of the appropriate strategy.
Nevertheless, he was not able to bring his decision score down
to a reasonable level, even with considerable practice. His
tracking performance, on the other hand, was consistent wlth
what we have seen in previous studies, so there is no reason to
doubt that this subject possessed a reasonable amount of psycho-
motor skill. (He was, in fact, qualified as a private flight
instructor and was the only subject participating in this study
who had aircraft piloting experience.) Apparently, this subject
was unable to learn the task effectively without continuous feed-
back of performance.

We do not have a gooda explanation for the verformance of sub-
ject WK on the decision task. His 1l-task decision score was appre-
ciably higher in the third experiment (combined decislon and
control) than it had been for the same task in the first and
second experiments. Allowing for the possibility that the sub-
Jject had performed atypically on the day he performed the third
experiment, we let him repeat this experiment. Before taking
data a second time, however, we provided additional training to
restore the subject's skill on the declsion task. Nevertheless,
the second repljication of the combined decision and control ex-
periment gave the same results as the first; namely, an unexpec-
tedly high l-task decision score. It is as though the subject
either "forgot" the appropriate decision strategy or lost his
motivation to perform well on the decision task alone in this
particular experimental situation.
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5.2 Model Refinements

5.2.1 Non-Constant Noise/Signal Ratio

Ve expected prior to the first experiment that a noise/signal
ratio of about -20 dB would allow us to match the subjects' deci-
sion performance for a variety of decision tasks. This assumption
was based on our success at matching human controller behavior
with this noise level for a number of control situations involving
stable controlled-element dynamics. Such was not the case, how-
ever, and we found an apparently linear relationship between the
decision error and the logarithm of the noise/signal ratio.

In keeping with the previous discussion of these results,
we suggest that the model might be improved by taking the sensi-
tivity of performance to noise/signal ratio into account. That
is, the rules for selecting observation noise levels might be
modified to show the noise/signal ratio as an explicit function
of this sensitivity. There is enough experimental evidence to
indicate that this is a reasonable idea, although further study
would be needed in order to determine with any degree of preci-
sion what this function <hould be. A model refinement of this
sort would improve the predictive accuracy of models for manual
control as well as for decision-making.

5.2.2 Time-Varying Observation Noise Process

In order to simplify the analysis of the decision task, we have
treated observation noise as a time-stationary random process.
This treatment is actually at variance with our assumption of an
underlying multiplicative noise process. (See the analysis of
observation noise in Appendix B.) To be consistent, we ought to
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consider the power density level of the observation noise as a
time-varying quantity which varies with the instantaneous magni-
tude of the observed signal.

The assumption of a time-stationary observation noise pro-
cess has apparently worked very well for modelling human response
behavior in continuous control situations. If one measures per-
formance in terms of mean-squared tracking error, as we have
done, then the effect of a given amount of estimation error on
performance is independent of the instantaneous value of the
tracking error. In this case, no loss of predictive accuracy
results from consideration of average observation nolse charac-
teristics.

The relation between observation noise and decision perfor-
mance 1s more complicated, at least for the type of declision task
we have studled. The effect that a given amount of estimation
error has on decision performance depends very much on the rela-
tion between the magnitude of the estimation error and the
instantaneous value of the "signal." For example, if the
"signal" is two target widths beyond the target boundary, the
subJect will make the correct decision even if the instan-
taneous error in his estimate of the signal position is substan-
tial. On the other hand, relatively small estimation errors may
cause an incorrect decision if the signal is very close to one
of the target boundaries. A more accurate modelling procedure
would take account of the relation between instantaneous signal
value and the variance of the accompanying estimation error.

It is possible that the subjects took advantage of the time-
varying characteristics of the observation noise when performing
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simultaneous declision and tracking tasks. For example, they
could have shared attention between the tasks when the decision
signal was close to a target boundary and paid nearly full atten-
tion to the tracking task at other times. Such a strategy might
yield better performance than that predicted by a model in which
the division of attention 1s assumed constant for the duration of
a trial. On the other hand, one would also expect a time-varying
strategy of this sort to improve performance in the two-task
decision situation. Thils apparently was not the case, however.

The only way to determine whether or not a time-varying
observation nolse process would account for the discrepancies
between theory and experiment would be to incorporate this time-
variation into the digital implementation of the model and per-
form the required model analysis. Thls modification to the model
was not made, because the effort involved did not seem warranted
in the context of this study.#*# Nevertheless, time-variations
of this sort will probably have to be included in the model if
more reallstic situations are to be analyzed, since most decision-
making tasks are intermittent, rather than continuous, in
character.

*Time varlations of a different type have already been incorporated
into the pilot-vehicle model to allow analysis of the approach -
to-landing problem. (Ref. 12).
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6. CONCLUDING REMARKS

A model for human decision-making has been developed and
tested against experimental data. This model 1is a straightforward
. adaptation of the optimal-control model for pilot/vehicle systems
developed previously by BBN. The "optimal gain matrix" included
in the pilot/vehicle model is replaced by an "optimal decision
rule" in the decision model. Otherwise, the two models are quite
similar: both include the concepts of time delay, observatlon
noise, optimal prediction, and optimal estimation. The model for
decision-making developed in this study is intended to apply to
sltuations in which the human bases his decision on his estimate
of the state of a linear plant.

Three experiments were conducted, the first of which allowed
us to determine the extent to which the model could predict the
effects of changes in task parameters on decision performance.
The remaining two experiments provided tests of our model for
interference in multiple-decision and in decision-plus~tracking
situations. Experimental results agreed very closely with pre-
dicted performance in situations involving only decision-making.
Using fixed values for human time delay and noise/signal ratio,
we were able to predict both 1-task and 2-task average scores to
within an accuracy of about 10 percent. Agreement was less good
for the simultaneous decision and control situation, with predic-
tion errors on the order of 15 percent. Discrepancies between
theory and experiment could not be attributed entirely to ex-
perimental variability. Problems relating to the motivational
aspects of the decision task and the difficulty in learning the
optimal decision strategy were considered, along with suggestions
for refining the model.
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As we discovered after we had proceeded well along in this
study, the very nature of the decision task made it difficult to
obtain conclusive results. Most Importantly, decision performance
was found to be relatively insensitive to the amount of attention
pald to the task by the pilot. Accordingly, we recommend that
future attempts to validate the model for declsion-making devel-
oped in this study be concerned with tasks for which the human's
overall decision performance 1s sensitive to the details of his
response behavior.

The pilot's task of declding whether or not to land his air-
craft 1s a decision problem to which the model may usefully be
applied, and one which will allow a more critical test of the
predictive accuracy of the model. Since the landing-decision
task can be formulated as the task of deciding whether or not the
aircraft is within the "landing window," this task falls within
the class of those that can be handled by the model. Ideally,
the model could be used to predict how changes in the nature of
the information displayed to the pilot will help (or hinder) the
pllot's decision-making ability. In addition, one could explore
the effects of mutual interference between the decision task and
the task of controlling the aircraft.

The landing-decision task, even when simulated in the labora-
tory, differs from the decision task explored in this study in
some Important respects. First of all, a realistic landing-
decision task is multi-dimensional. The pilot must not only
determine whether or not the alrcraft's altitude 1is within an
acceptable range, but he must also check on the lateral position,
rate-of-desent, and possibly airspeed and attitude as well. Be-
cause of the complexlty of the task, we suspect that decision
performance will be reasonably sensitive to the pillot's internal
nolse (particularly in the absence of simulated instrument noise).
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The pilot will generally not have the "target boundaries"
displayed to him. Instead, he must compare his perception of the
state of the vehicle against some ideal state that 1s stored in
his memory. An addltional source of estimation error is now in-
troduced into the problem to the extent that the pilot's mental
image of the target area fluctuates with time. One might treat
thls problem by assocliating observation noise processes wlith the
target boundaries as well as with the display variables related
to flight control. Experimentation and analysis willl be neces-
sary to determine whether or not this is a wvalid approach, and,
if so, what noise levels should be associated with the pilot's
mental image.

If a single individual is controlling the aircraft and making
the decision with regard to landing, one must consider the possi-
bility of interference between the control and decision tasks.
Because the same information obtained from the same displays 1s
used for both tasks, the current model for interference may not
be applicable to this situation without modification. (At pre-
sent, interference 1s assumed to occur among perceptual variables
and is accounted for by appropriate changes in the noise/signal
ratios associated with each variable.)

The model for decision-making might also be used to analyze
the pilot's task of detecting and identifying changes 1n control
system dynamics. System dynamlcs will often degrade markedly
whenever a system failure occurs, or whenever the "operating
polnt" of the vehicle changes because, say, a stall is imminent.
The pilot must then identify the nature of the problem and adopt
appropriate recovery strategy. The entire decision problem may
be thought of as a four-step process: (a) detection of the change
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in dynamics, (b) identification of the new dynamics, (c¢) modifica-
tion of the pilot's basic control strategy, and (d) optimization,
or "fine tuning" of the response. (See Reference 16 for a dis-
cussion of adaptive manual control.)

The model should be most readily applicable to the detection
aspect of the problem. Elkind and Miller (Ref. 17) have developed
a model for the detection task in which the human is assumed to
estimate the system states and to detect a change if these states
exceed some pre-determined limits. There is thus a close analogy
between this detection task and the decision task which has been
described in this report. Note that we would have to include
the pilot's optimal control strategy in the model for the de-
tection problem in order to account for the fact that the pilot
closes the control loop.

We suspect that the model for decision and control could be
applied to the identification phase of this decision problem if
appropriate modifications were made to the model. This task is
more complicated than the decision tasks we have considered up
to now. It 1s no longer sufficient for the pllot to observe
that system behavior is unusual; he must decide which set of
events i1s most llkely to account for this behavior. One way to
model the pilot's decision strategy is to assume that he con-
structs a model of the system for each of the possible control
system configurations that might occur. The pilot then compares
the observed vehicle state with the outputs of each of the
models and, using Bayesian decision rules, makes a guess as to
how the system dynamics have changed (Ref. 17). In order to
account for this decision strategy, the current model would have
to be augmented to represent additional "internal models" of the
flight-control system.
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In conclusion, we submit that the model for declision-making
and control described in this study is worthy of further con-
sideration. With some additional research needed to refine and
extend the model, it should prove applicable to the analysis of
important decision-making problems which face pilots in flight-
control situations. In particular, the model should prove useful
in indicating the extent to which changes in the control and dis-
play systems will affect the pilot's decision-making capability.
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APPENDIX A
EXPERIMENTAL APPARATUS AND PROCEDURES

A.1 Principal Experimental Hardware

A.1.1 Computing Machinery

An Applied Dynamics AD/Y4 Analog-Hybrid System was used to simulate
vehicle dynamics, filter input signals, generate the display, and
compute the various performance measures. Input signals were ob-
tained from pre-recorded analog magnetic tape.

A.1.2 Subject Booth
Displays and controls were located in a subject booth that was

isolated both acoustically and visually. A chin rest was provided
to maintain a fixed eye-to-display distance.

A.1.3 Display
The subjJect was provided with an oscilloscopic presentation of
the display shown in Figure A-1. Eye-to-display distance was
about 70 centimeters: thus, 1 cm. of display displacement cor-
responded to approximately 35 milliradians (2 degrees) visual
arc, Target boundaries were generated electronically and were
located at +18 millirad (+1 degree) visual arc from the zero
reference level. A zero reference indication was provided by
a 0.16 em strip of opaque Red tape during the final experiment
to facilitate manual control performance. No grid lines were
shown on the 'scope face. The phosphor of the display tube
was type P-11, which gave a bluish cast to the reference and
error indicators.

A.1.4 Controls
A single-throw spring-return pushbutton allowed the subject to

indicate his instantaneous "decision.”" The pushbutton was mounted
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so that it could be hand-held and thumb-operated. The subject
was instructed to keep the pushbutton depressed whenever he thought

the "signal" was within the target area; otherwise, he was to re-
lease it.

An aluminum stick attached to a force-sensitive hand control
(Measurement Systems Hand Control, Model 435) allowed the subject
to control the tracking variable. The stick-control combination
provided an omnidirectional spring restraint with a restoring
force of about 28 newtons per centimeter deflection of the tip of
the stick. The subject used wrist and finger motions to manipu-
late the control stick and was provided with an armrest to support
his forearm. The stick was mounted vertically; forward deflection
of the stick imparted an upward velocity to the tracking error
signal that was proportional to the applied force.

A.2 Subjects and Training Procedures

A.2.1 Experimental Subjects

Seven subjects participated in various phases of the experimental
program. Six of these subjects were current or recent englneering
students at Massachusetts Institute of Technology with no flight
experience and no experience with laboratory tasks of the type
explored in this study. The remaining subject was a former pri-
vate flight instructor who had participated in previous studies

of manual control.

A.2.2 Run Length
All training and data trials lasted four minutes and were gener-

ally presented in sessions of two or three trials each with a
minimum rest period of about 10 minutes between sessions. Minimum
rest periods of 1 minute were provided between successive trials
within a session.
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A.2.3 Inputs
A number of input signals were used in succession during training

to minimize learning of the input. A separate set of four input
segments were reserved for data-taking. In order to minimize the
effects of input differences on the experimental results, the
same input segment was generally repeated for each of the three
conditions investigated during a data session.

A.2.4 Training on the Decision Task
The first training trial consisted of a run in which the subject
simultaneously observed the "signal-plus-noise" variable y(t) on
one indicator and the "signal" s(t) on the other indicator. The
object of this trial was to enable the subject to learn the sta-

tistical properties of the "signal' and "noise" processes. For
most of the subjects, a single trial of this sort was sufficient.
Training then proceeded with only the signal y(t) shown on the
display, and the subject was informed of his "decision error"
(defined below) at the end of each run.

The subjects appeared to reach a stable level of performance
after a few training trials. That is, the decision error score
did not exhibit a consistent decrease with practice. Accordingly,
when training the subjects for the first experiment, we provided
them with an equal number of training trials per task; we did not
attempt to train to an asymptotic level of performance as we would
normally do for a tracking task. S8Six trlals per task were provided.

The subjects were trained to an apparently asymptotic level
of performance prior to data-taking in the two-task decision sit-
uation. An average of 6 training trials on the two-task situation
were conducted per subject.
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When performing a single decision task, the subjects were
instructed to minimize the total decision error (defined as the
fraction of time during the run that their response was in error).
This error score was computed as the sum of the two component
error scores: (a) the "false-alarm" rate, defined as the fraction
of time that the subject responded "in" when the signal was out-
side the target, and (b) the "miss" rate, defined as the opposite
type of decision error. The subject was not told specifically
how to apportion his total decision error among the component
scores, and he was generally not informed of these component
scores. If these two scores differed by more than a factor of
two or three, however, the subject was informed of this and en-
couraged to reduce the bias in his decision criterion.

When performing two decision tasks concurrently, the subjects
were required to minimize a composite score defined as the sum of
the total decision error scores on each task. At the end of each
run, they were informed of the composite score, plus the decision
error assoclated with each task. They were not told how each de-
cision error resolved into false-alarm and miss rates.

A.2.5 Training on the Tracking Task

Each subject was trained on the tracking task alone until an ap-
parently stable performance level was reached. The instructions
were to minimize mean-squared tracking error. Approximately 30
training trials were provided each subject.

The subjects were then trained to an apparently asymptotic
level of performance on the combined decision-plus-tracking task
(about 14 trials per subject). The subjects were instructed to
minimize a weighted sum of tracking and decision errors. Before
training was begun on the combined task, model analysis was
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performed with nominal pilot parameters to determine a weighting
on the decision task that would allow the decision and tracking
scores to contribute roughly equally to the total performance
measure. This weighting remained constant during the entire
training and data-taking period. At the end of each session, the
subject was informed of his total performance score, his tracking
score, and his decision error score (both weighted and unweighted).
The subject was not instructed as to how to apportion his total

score among the component scores.
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APPENDIX B
ANALYSIS TECHNIQUES

B.1 Revised Model for Observation Noise

The model for observation noise that we have used in the
past is based on the assumption that pilot randomness arises from
an underlying multiplicative noise process. We justify this as-
sumption on the wealth of psychophysical evidence which shows that
the human's errors in estimating various quantities tend to scale
with the magnitudes of these quantities. In most of the tracking
situations that we have explored in the past, the human's percep-
tual task has been to estimate the magnitude of system error and
error rate with respect to a zero reference. For situations in
which the signals have had zero means, we have considered the
power density level of the observation noise process to be propor-
tional to signal variance.

The perceptual task is somewhat different for the decision
task that we have explored in this study. Here the subject's task
is to determine whether or not the signal is on one side or the
other of a target boundary —— not how far it 1s from a null value.
Thus, the reference level is nonzero, and our analysis should take
this into account.

In order to analyze the observation noise process in this task
situation, let us start with our basic assumption of a multiplica-

tive white noise process. We postulate the following model:

vy(t) = [y(t)—YO] - m(t) (B-1)
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where y(t) is the signal displayed to the human, Yo is a reference
level, m(t) is a white noise process which might be associated
with noise in the human's central processing mechanism, and v (t)
i1s the white noise process that is effectively added to the dis-
played variable. (We neglect the effects of visual resolution
limitations, which would add another term to the model.) A sepa-
rate and linearly independent noise process is assoclated with
each of the perceptual variables to be estimated by the human.

In general, the human will want to estimate the relative displace-
ment and velocity of each display indicator.

The autocorrelation of the noise process vy(t) is defined as
follows:

¢vv(t,1) = E?{vy(t) . vy(t+r)}

£ {3 (6)-Y ) (7 (+1)- () -m( 1) (B-2)

Since the multiplicative process m(t) is assumed to be linearly
independent of the display variable y(t), the above expression
may be written as a product of the autocorrelation of [y(t)—YO]
times the autocorrelation of m(t). Since m(t) is a white noise
process, its autocorrelation function is zero for all nonzero
values of 1T, and it has a value of wP for 1=0, where P is the
power density level of m(t) (defined over positive frequencies
only).* The above expression thus simplifies to

¢Vv(t,r) = é;{y(t)y(t+T)—Yo(y(t)+y(t+T)) + Yg}-nP §(t) (B-3)

¥
The power density level P has been referred to in the text as
the pilot's "noise/signal ratio."
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This autocorrelation function has nonzero value only for
T=0. Thus, v(t) is also a white noise process whose power density
level is defined as

Vo(t) = [6,,(£,0)/m (B-4)

Since the expected value of a sum of terms is equivalent to the

sum of the expected values for each term, we obtain

v () = {e{yz(t)} - 2Yo-€{y(t)} + E{Yg}]- P (B-5)

The above expression shows the power density level of the
observatlion noise process as a time-varying function. That is,
the expected noise power fluctuates with the moment-to-moment dis-
placement of y(t) from its reference value Yo' In order to simplify
our analysis, we shall henceforth consider the time-average value
of the polse power, which we denote simply as Vy. This simplified
representation of observation noise has been adequate to account
for pilot remnant in a variety of steady-state control situations.

For the particular decision task we have considered, analysis
of the observation noise associated with indicator displacement
is complicated by the presence of two reference levels (+YT and
-Y

assumptions as to how the subject uses these reference levels in

s the upper and lower target boundaries). We must make certain

his estimation process. Let us assume that the subject's percep-
tual task is to estimate the distance of the display variable y(t)
from the target boundary which 1s closest at any instant of time.
(This makes perfectly good sense when y(t) is relatively close to
one or the other target boundaries — the situation in which a
decision error is most likely to occur.) Accordingly, the model
of Equation (B-1) is modified as follows:
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vy(t) [y(t)-YT] - m(t) y(t) >0

(B-6)

vy(t) [y(£)+¥n] - m(t) y(t) < 0
The expression for the power density .level Vv(t) is modified in a
similar manner. '

Let us compute the power density for the situation in which
y(t) > 0. Equation (B-5) 1is written as

V; = ]yz p(y)dy - 2Yg Jy - p(y)dy + Y% Jp(y)dy S (B-7)
0 0 0

where p(y) is the probability density function of the display
variable y(t). For the decision task we are considering, y(t) is
a Gaussian random variable with zero mean and a variance 0;.
Accordingly, we obtain

52 42
e | X 2y (.3989)0 + S|P (B-8)
Vy = |5 -2¥, (.3 y 2 -

An identical expression is found for the noise assoclated with
the time for which y(t) < 0. The total average noise power is
given as the sum of V; and V; and is approximately

2 2 2
V. = [ef + Y5 - (1.6 - 0o ]P B-
g = log + Y3 = (1.6) Yq - oy] (B-9)
This expression applies to the estimation of indicator displace-
ment. Since the reference for estimating indicator velocity 1is

simply zero velocityv, the power density level for observation
noise on velocity is
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Ve = o+ P -
¥ (B-10)
which is the model we have used successfully in the past.

The expression of Eguation (B-9) .may be written so as to

indicate a "correction factor" to the simplified expression for
observation noise. Thus,

2
vV = .P.C B-11
v oy ( )
where
Y% YT
c=1+ - = (1.6) 5 (B-12)
oy y

Correction factors appropriate to the four decision tasks investi-
gated in this study are shown in Table B-1.

TABLE B-1

CORRECTION FACTORS APPLIED TO THE PILOT'S NOISE/SIGNAL RATIO

Configuration oS/YT on/YT ov/YT gggggit%gg)
A 1.46 .197 1.47 -4.3
B 1.46 .311 1.49 -4.2
C 1.46 .311 1.49 -h.2
D 1.46 .623 1.59 -4.1
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B.2 Prediction of Decision Performance

Descriptions of the experimental decision task and of the
model for the human in this situation have been given in Chapter
3. In this section we elaborate on the analytical procedures for
predicting decision performance. For convenience, the model

structure shown in Figure 3 is repeated in Figure B-1.

B.2.1 Optimal Estimation
The portion of the model relating to optimal estimation allows us

to predict the variances of the subject's best estimate of each
state variable and the variances of the corresponding estimation
errors. The varlances corresponding to the estimate of the
"signal" s(f) and the error in estimating this signal [se(t)] are
then used to compute the subject's decision error, as described
below. This portion of the model is contained in our optimal-
control model for pilot/vehicle analysis, which has been fully
described in the literature. The reader is referred to References
L and 5 for further details.

B.2.2 Probability of Decision Error

In order to have a theoretical prediction to test against the ex-
perimental measure of decision performance, we must identify the
relative frequency of an error with the "pure probability” of an
error. Our experimental measure 1is, by necessity, a relative-
frequency measure; that is, the decision error that we measure
experimentally is defined as the fraction of time during a trial
that the subject's response is incorrect. OQOur theoretical pre-
diction, on the other hand, is the probability that, at any arbi-

trary instant of time, a decision error will be made.
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Let us represent the various "states of the world"” and the
human's "decisions" by the following notation:

h1 implies s(t) within target area

ho implies s(t) outside target area

Hl implies a decision that s(t) is within target area

Hy implies a decision that s(t) is outside target area
Two types of decision error may be made. A "false alarm," denoted
by the condition (Hl,ho), occurs whenever the subject indicates
"in" when, in fact, the signal is actually outside the tarpget area.
The reverse type of decision error, or a "miss", is denoted as
(Ho,hl). The total probability of a decision error is the sum of
the probabilities of a false alarm and of a miss. Thus,

P(DE) = P(H,,hy) + P(Hy,h;) (B-13)
We shall first compute the probability of a false alarm.

Let #Yn
"signal" at any instant of time, [§] be the subject's best esti-

be the target boundaries, [s] be the location of the

mate of the signal, and [se] be the estimation error. By defini-
tion,

s =8 - s (B-14)
We have already shown that the subject's strategy will be to re-
spond "in'" whenever his best estimate of the signal lies within

his "decision boundary," denoted by *Y, (see section 3.3.2). The
probability of a false alarm is thus
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P(H,hy) = P(IS] < ¥y , [s] > ¥o) (B-15)

The above expression can be simplified somewhat if we take
advantage of the symmetry of the particular decision task that
we have explored. Since the signal s(t) and the noise n(t) are
each Gaussian random variables with zero means, the probability
of a declsion error being made when the signal 1s above the upper
target boundary is equal to the probability of an error when s(t)
is below the lower boundary. Thus, the probability of a false
alarm may be written as

P(Hy,hg) = 2 « P(lsl<yp,s>¥q) (B-16)

The computation of this probability is facilitated if it is
re-stated in terms of [s] and [se]. Using the definition of
Equation (B-14), we derive the following identitv: s>Y, implies
that se<§—YT. Equation (B-16) may now be written as )

P(Hl,ho) = 2 « P(-Y <S§XD,se<s—YT)

D_

+YD S—YT (B-17)

. ~ . . dA
2 J J p(s,se) dse S
...YD -—C0
where p(s,se) is the joint Gaussian probability density function

for the signals s and Se¢ Since the optimal estimate and estima-
tion error predicted by the Kalman filter are linearly independent
(Refs. 13,14), the joint probability density may be factored into
the product of the individual densities. -Thus,
+YD s—YT
P(Hl,ho) =2 - J J p(se)-dse p(s)-ds (B~18)

o

-y i-
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The variables [s] and [se] are Gaussian with variances cé

and 05 , respectively. Let us make the following change of
e
varlables:

g
[}

A
s (B-19)

e
]

s_/o
e’"s
e

where gs and Ee are normalized Gaussian variables. The probabillty

of a false alarm may now be written as

+YD/°§ 0se
P(Hy,hg) =2 - ./. J{ p(E)AE, | P, (E]) gy (B~-20)
—YD/ogL_ o ]

where po(g) i1s the unit-variance Gaussian probability density

function.

The probability of a "miss" is computed in a similar manner.
This probability may be written as

P(H,,hy) = P(|5]>Yp,|s]<Yq)

2 . P(S>YD’S_YTisefs+YT)

N > (B-21)
= 2 f [p(se)dse, p(s)-ds
Ipls-v.,
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Making the change of variables shown in Equation (B-19), the
probabllity for a miss may be written as

gS . 0§+Y

P(Hy,hy) = 2 - f / p,(€)dg  |p (€ )dE (B-22)

The total probability of a decision error, P(DE), is simply

the sum of the probabilities shown in Equations (B-20) and (B-22).
This number 1s a function of the target boundary YT’ the decision
level YD, and the variances of the subject's estimate of s(t) and
of his estimation error. These variances are given by the portion
of the model relating to optimal estimation. The target boundary,
YT’ i1s an experimental parameter. The remaining parameter, YD’

is the decision level that is selected by the subject to minimize
his total decision score P(DE).

It may be possible to solve analytically for the decision
level which minimizes the decision score. Rather than attempt
that, however, we have performed a numerical investigation of the
relation between decision score and YD' For the condition in
which s(t) 1is equally likely to be inside or outside the tarpget
and decision errors of either type are welghted equally in the
overall performance measure, the optimal decision boundary appears
to coincide with the target boundary.
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APPENDIX -C
SUPPLEMENTAL THEORETICAL DATA

This appendix contains five graphs which relate predicted
system performance to noise/signal ratio. Figures C-1 through C-4
pertain to performance on the four decision tasks explored in the

first experiment; Figure C-5 pertalns to mean-squared tracking
error.

Values for the time delay and motor noise parameters of the
model for the human controller were chosen on the basis of pre-
vious studies of manual control. A time delay of 0.17 second was
selected because it was found to be typical of effective time
delays measured in K/s tracking tasks (Refs. 8 and 9). (The time
delay of 0.2 second assumed for decision-making represents an
average delay that is typical of a wider range of manual control
situations.) A motor noise/signal ratio of -25 dB was found to
be representative of single-loop tracking behavior (Ref. 4).

Observation noise/signal ratios and effective lag time con-
stants were selected to provide a good match to the mean-squared
error, error rate, and control scores. The lag time constant of
0.068 second that was needed to match the tracking performance of
subjects KC and HH was less than the time constants that we have
generally found in previous experiments with K/s dynamics. (Time
constants in the range of 0.08 to 0.1 are typical.) Since the
subjects used in these experiments had no piloting experience,
it 1s possible that they were less inhibited about making rapid
control movements than were the subjects used in previous studies
(who, for the most part, were instrument-rated pilots).
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APPENDIX D
LIST OF SYMBOLS

Matrix of constants which represents system dynamlcs
Correction function for observation noise

Matrix of constants which relates display vector to state
vector

Decision error

Filter characteristics

Fraction of attentlon

Subject's decision as to the state of the world
Assumed "state of the world"

Total performance score

Multiplicative noise process

"Noise" portion of signal-plus-noise variable displayed to
the human

Human's noise/signal ratio. Also, probability density function
Nolse/signal ratio pertinent to a single-task situation

The "signal" portion of the signal-plus-noise variable dis-
played to the human. Also, the Laplace operator.

Human's best estimate of the "slgnal"

Error in estimation of the "signal"

Utility of a declsion

Motor nolse process

Equivalent (vector) observation noise process
Power density level of observation noilse process
Vector of system forcing functions

Vector of state variables
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The human's best estimate of the state vector
Vector of display variables
Vector of display varlables as percelved by the human

Decision boundary adopted by human when performing decision
task

Target boundary used 1n decislon task
Represents data base on which human bases his declsion
Impulse function
Critical frequency of a noise-shaping filter
Autocorrelation function
Signal varilance
Human's effective time delay
Lag time constant which appears in model for human controller
Normalized Gaussian variable
Optimal galn matrix which appears in the model for the human
controller

Subscripts
refers to decision boundary; also refers to decision task
refers to estimation error; also refers to tracking error
refers to target boundary; also refers to tracking task
refers to control signal
refers to system states
refers to display variables

refers to "signal" within target area; also refers to single-
task situation

refers to "signal" outside target area



Superscripts

M refers to multiple-task situation
1 refers to l-task situation
2 refers to 2-task situation

NASA-Langley, 1971 —— 5 10 7



